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Abstract. A weak localisation theory for a semiconductor quantum wire, which has a width 
of the order of the Fermi wavelength, is presented. In our model the electronic motion is 
essentially one-dimensional and the localisation length L, is much larger than the mean free 
path I ,  so that, in contrast to conventional theories a non-localised quantum wire with a total 
length L < L, but much larger than I is possible. For the static properties, we study the 
temperature dependence and the subbands effect of the weak localisation. We find that when 
(the phase coherent length) L,  > L ,  the conductance of the quantum wire depends on L 
instead of L,, implying a temperature independent behaviour. Our theory explains recent 
experiments which found temperature independent transport behaviour at very low tem- 
perature for narrow AlGaAs/GaAs quantum wire. In studying the AC conductivity, our 
calculation predicts that, for the quantum wire with L > L, ,  there exists a critical value of 
the frequency above which the system is delocalised and the AC conductivity a (w)  rises as 
w2. 

1. Introduction 

In recent years the study of lightly doped semiconductor quantum wires (Skocpol et a1 
1982, Dean and Pepper 1984, Skocpol 1988, Hiramoto et a1 1989) has attracted much 
attention. A quantum wire is defined here to have a very narrow width W - AF (Fermi 
wavelength) so that the electron states are essentially quantised laterally. In this way it 
is different from both the usual effective one-dimensional (ID) system (Thouless 1977, 
1980) where W + AF (no lateral quantisation), and the strictly ID systems (Mott and 
Twose 1961, Landauer 1970) where there is no lateral degree of freedom. Thus, the 
influence of lateral quantisation on weak localisation of the quantum wire is a subject 
that needs to be explored. The purpose of this paper is to carry out such an exploration 
and we present a weak localisation theory for the semiconductor quantum wire which 
complements the existing weak localisation theory (Lee and Ramakrishnan 1985, 
Altshuler and Aronov 1985) for the ID and effective ID systems. Our focus here will be 
a discussion of the temperature dependence, the subband effect and the low frequency 
behaviour of the weak localisation of the semiconductor quantum wire. Our theory was 
developed in our study of the electric field effect on weak localisation (Hu and O’Connell 
1989), where we found that the physics of the electrons in a semiconductor quantum 
wire is better described by a sudden reversal picture (see discussion below) in contrast 
to the diffusive picture. 
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1.1. Diffusive picture 

A decade ago, Thouless (1977,1980) showed that below some critical temperature T,, 
the electrons in the effective ID system are free to diffuse over a distance L, (the 
localisation length), but can then go no further until a phonon or another electron causes 
a transition to a new state. Thouless’s idea forms the foundation for the modern theory 
of weak localisation (Abrahams et a1 1979). Weak localisation is a quantum effect (Lee 
and Ramakrishnan 1985, Altshuler and Aronov 1985) caused by the coherent back 
scattering (CBS), where an electron with initial momentum k is finally scattered into the 
opposite state -k elastically. According to the diffusive picture, in a real system the CBS 
is realised through coherent scattering sequences (fan diagram), where an electron of 
Fermi momentum kFmoves in a diffusive way such that its momentum gradually changes 
to -kF + q (with q/kF 4 1). The average distance (the phase coherent length L,) over 
which the electron diffuses during these sequences, is estimated to be m, where D 
is the diffusion constant and r ,  is the phase coherent time, the average time for a CBS 
process. This diffusive description of the electron motion serves as the basis of almost 
all the theoretical treatments of the quantum correction to the conductivity in the 
metallic regime. 

1.2. Sudden reversalpicture 

While the diffusive picture for the CBS is illuminating and correct for most of the weakly 
localised systems, it certainly does not rule out other possible ways for electrons to 
achieve CBS in some peculiar systems. The strong localisation of the ID system (including 
the system with finite width W < AF) mentioned earlier is one example, where the CBS 
process happens one-dimensionally at a length scale of 1. Another picture, the sudden 
reversal picture for the CBS of electrons, proposed by us (Hu and O’Connell 1989), is 
such that the CBS process basically exhibits a ID behaviour but at a length scale much 
larger than 1. In other words, our emphasis is on providing a mechanism (the sudden 
reversal picture) for treating semiconductor wires having a width W - AF, a situation 
where lateral quantisation is playing a decisive role and for which the Thouless diffusive 
picture is not applicable. As in the diffusive picture, the CBS is realised by the coherent 
scattering sequence which has a total momentum transfer of -2kF + q ( q / k ,  4 1) for 
electrons near the fermi surface. The difference is that instead of diffusing elastically 
through many different states gradually to achieve the CBS (as in the diffusive picture), 
the electrons are now assumed to be scattered by impurities into only two kinds of states. 
One is a small momentum transfer forward process which essentially does not change 
the velocity of electrons, the other is a large momentum transfer (-2kF) process which 
makes the electron moves essentially in the reversed direction. In addition, the assump- 
tion that the system is lightly doped makes the probability of the reversal scattering 
much less than the forward scattering. (The opposite case, i.e. when the reversal 
scattering dominates, corresponds to the ID case). In this way an electron will experience 
many forward scatterings with little change in its original speed. Eventually it will 
experience a reversal scattering. This is illustrated schematically in figure 1. Thus in our 
picture an electron will travel a distance L, - uF‘t, in a CBS process, as distinct from the 
result L ,  - in the diffusive picture. We stress that the Thouless diffusive picture 
is applicable to effective one-dimensional systems where L,  > W + AF whereas the 
sudden reversal picture may be used to analyse semiconductor quantum wires for which 
L, > W - AF so that the electron states are quantised laterally. Also, the L,  in our 
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Figure 1. Schematic picture of the velocity (U,) 
evolution (time in units of the momentum relax- 
ation time (7)) of an electron in a lightly doped 
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picture is much larger than I ,  in contrast to the ID case (no lateral dimension of freedom) 
in the diffusive picture where L, - 1. A direct consequence of the sudden reversal picture 
is that when the electric field E exceeds a critical value E ,  = hu,/eL$, it introduces a 
new cut-off length L,  = (E,/E)’/*L, (Hu and O’Connell 1989) and delocalises the 
system. This is in better agreement with the experiments of Hiramoto et a1 (1989) than 
the Mott-Kaveh theory (1981) which also has a cut-off length which is electric field 
dependent so that again the system is delocalised for a sufficiently large E value. 
Incidentally, we note that, in the diffusive picture, the possible effect of the electric field 
on weak localisation is a controversial issue (Lee and Ramakrishnan 1985, Hu and 
O’Connelll988) and is known to be different for systems with different dimensionalities 
(Kirkpatrick 1986). 

The sudden reversal picture of the CBS proposed here is applicable to many of the 
semiconductor lightly doped quantum wires available recently through advances in 
microfabrication technology (Skocpol 1988, Hiramoto et a1 1989). The width of these 
thin wires is comparable to the Fermi wavelength (-lo3 A), which makes the motion of 
electrons in them basically one-dimensional in a quantum mechanical way. On the other 
hand, the presence of a finite cross section also makes them totally different from the 
strictly ID systems. Physically, due to the relatively large value of the Fermi wavelength 
(-lo3 A) of the semiconductor, the dilute impurities in the quantum wire cannot indi- 
vidually block the way of the moving electrons and hence ensures that the reversal 
scattering has a small probability (roughly proportional to the ratio of the size of the 
impurity to the width of the wire). At the same time, the lateral quantisation of the 
sample restricts the motion of the electrons essentially in a ID fashion and thus makes 
the other possible way of impurity scattering, the forward scattering, the dominant 
process. 

2. Formulation 

Next, we implement the physical idea of the sudden reversal picture of CBS into a 
quantitative evaluation of the associated quantum corrections to the electric conductivity 
of the quantum wire (with a width of the order of the Fermi wavelength and containing 
dilute impurities). For a simple discussion of the problem, the electron-electron inter- 
action will be neglected in this paper. 

Obviously, to formulate the sudden reversal picture, we can no longer adopt the 
conventional technique of the fan diagram calculation in the Kubo formalism, the basis 
of the diffusive picture. Instead one must perform a calculation, from first principles, 



5338 G Y Hu and R F O’Connell 

which will include the high-order impurity scattering effect self-consistently. We achieve 
this by a centre of mass formulation of the electron system and by solving the equation 
of motion of relative electrons self-consistently (Hu and O’Connell 1987, 1988). This 
formulation enables us to study the macroscopic quantum mechanic effects directly. The 
main approximation involved is to assume that the total number of electrons N in the 
system is much larger than one. Such an approximation is certainly good for a realistic 
semiconductor quantum wire obtained from a two-dimensional system. For instance, 
N - lo3 for a typical system 1 x 0.1 pm2 with n, - 10’’ cm-’. 

Our calculation scheme is a generalised Langevin equation (GLE) approach for the 
centre of mass electrons, which we have developed in a series of papers (Hu and 
O’Connelll987,1988). For completeness, we repeat a few steps (equations ( l ) ,  (2) and 
part of ( 3 ) )  in the following. First, we recall that the dynamical conductivity (Hu and 
O’Connelll987) may be written as 

a ( o )  = (ine*/m)/(w + ip(o)/M) (1) 

where n is the electron density, e the electron charge, m the effective mass, M = Nm, 
and p(w) ,  the Fourier transform of the memory function in the GLE, contains all the 
information concerning the effect of the heat bath (the relative electrons and phonons) 
on the transport properties of the quantum particle (centre of mass electrons). Secondly, 
aself-consistent expression for the memory function, obtained by solving the Heisenberg 
equation for the density operator of the relative electrons (Hu and O’Connell 1987), is 

where the detailed expressions for p( ’ ) (w) ,  Pkq(w) and Qk,(o) can be found in Hu and 
O’Connell(l987), and 

k ( w )  = pq(o)  1= p k q ( @ ) .  
4 k4 

The p(O)(w) in (2) is the lowest order impurity contribution to the memory function, 
while the other terms are due to higher order contributions from impurity scattering. 
Also, the approximations used in obtaining (2) are the use of a random impurity 
distribution and a cumulant decoupling scheme for higher order scattering terms. 

Equation (2) can be further simplified when applied to the semiconductor quantum 
wire. First, the structure of Qk,(o) shows that it is an on-site high order contribution, 
which arises from the repeated forward scattering from the same impurity site. It is 
not related to the dominant quantum interference term (which arises from multi-site 
scattering) and will be neglected. Secondly, it is straightforward to show that in the o < 
1/t limit ( t i s  the momentum relaxation time), the P k q ( o )  in (2) is independent of k and 
the CBS events make the dominant contribution (Hu and O’Connelll988). For a quantum 
wire, obtained from a two-dimensional electron gas by lateral confinement, it is 

where q‘ is the wave vector along the wire ( x  direction), B(x) is a step function which we 
will discuss later, It,n’ are subband indices due to the lateral quantisation, and m 
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represents the highest populated subband. Also ni and U are the impurity density and 
the impurity scattering potential respectively. In addition, 

wqtqF(nn’) = +(q’ cos q n  + k,,, sin q,) (4) 

where k,, is the wave number of the electrons in the n’th subband, and qn is the angle 
between the Fermi wave vector of the nth subband and the x axis, i.e., sin qn = k,/kF. 
Also qc is defined by the relation tan qc = W/l(1> W). The magnitude of qn relative 
to qc determines the way that the electrons are being scattered. Due to the narrow width 
of the wire (W < I ) ,  those electrons with qn > qc will be mainly scattered by boundaries, 
while those electrons with q n  < qc will be scattered by impurities before they hit the 
boundary. The step function 6 ( x )  in (3) is introduced to take account of this effect, by 
excluding the contributions to the back scattering events due to those electrons (with 
P),, > qc) having the boundary reflection as their main scattering events because such 
boundary reflections lead to a random change in phase. 

Substituting (3) into (2)  and neglecting the last term on the RHS of ( 2 ) ,  after some 
algebra we obtain a closed form expression for the memory function: 

where qo = w/uF, Ti/. = 2nniU2N(cF),  N ( E ~ )  is the density of states per spin at the 
Fermi energy, and the factor 2 in the last term takes account of the spin degeneracy of 
q’. We note that the sum over q’ in (4) is carried out by the standard continuum 
approximation and by the introduction of an upper and lower cut-off for q’, 1/1 and 
1/L, (1/L if L,  > L )  respectively. Here L,  is the phase coherent length which in our 
(sudden reversal) picture is proportional to the phase coherent time T,, as mentioned 
in the introduction. Equations ( 1 )  and ( 5 )  are used to evaluate the electric conductivity 
for the quantum wire in the following. 

3. Static conductivity 

The static conductivity is obtained from (1) and ( 5 )  by putting w = 0. Thus, we obtain 
(using a’ = ne2z/m, and po(0) = M / T )  the conductivity of a quantum wire, constructed 
from a 2~ electron system by lateral confinement, in the form: 

a(w = 0)  = u0[1 - (cu/n)(L - 1)/4 
a(w = 0 )  = 0 0 [ 1  - (cu/n)(L, - /)//I 

( L ,  > L )  

( L ,  < L )  

(6a) 

(6b) 

where a! = 2y/kFW, and 

is a factor which takes account of the lateral quantisation into subbands, and the uo is 
the bulk two-dimensional conductivity. We note that (6a) and (6b) are the same as the 
well known diffusive picture results of the Id perturbation theory namely a(w = 0) = 
ayd[l - (1/n)(L - 1)/l] if we take U& = Wao and CY = 1 (i.e. y = 1 and W = 2/kF).  
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Figure 2. Conductivity u/(e2 /h)  of a AIGaAs/GaAs quantum wire ( L  = 1.9pm, W = 
0.09 pm, 1 = 0.48 pm) as a function of temperature T. Full circles are data extracted from 
the experiments of Hiramoto et a1 (1989) and the full line is the theoretical result from (6a) 
and (6b) with L,  = 1.9 T ' l ' and  (Y = 0.51. 

In fact, when a! < 1 our result of a ( w  = 0) in (6) is essentially different from that of 
the diffusive picture (a = 1). From (6), we can estimate the quantum wire will remain 
non-localised as long as the length of the system satisfies 

Thus, our theory can be consistently used for the quantum wire having a phase coherence 
length much larger than 1. Also, because of L, - T-" (n  depends on the mechanism for 
the inelastic scattering), a is independent of Tin the low temperature region where L,  
exceeds L (see (6a)) ,  and aincreases with increase of Tin the high temperature region 
where L, < L (see (6b)). Experimentally, Hiramoto et a1 (1989) have measured the 
conductivity of AlGaAs/GaAs quantum wires and obtained some puzzling results for 
the phase coherence length from a fitting to the existing weak localisation theory. Here 
we show that their results can be better understood by fitting (6a) and (6b) to the values 
of conductivity extracted from figure 3(a) of their paper. The extracted data of a for 
a AlGaAs/GaAs quantum wire (sample number 44, L = 1.9 pm W = 0.09 pm, I = 
0.48 pm) from the Hiramoto et a1 paper is shown in figure 2 by full circles. As can be 
seen from this figure, the temperature dependence of a is just what is expected from 
(6a) and (6b) (constant a at low T and increasing a at high 7). First, by (6a) the 
temperature independence of a at low Tis  because L, > L in that region. A fitting of 
(6a) to the constant part of a at low T (a/(e2/fi) = 0.25 pm, L = 1.9 pm, 1 = 0.48 pm) 
gives a! = 0.51. Secondly, we assume the electron-electron interaction determines the 
phase coherence length with L, = pm (C is a fitting parameter, Altshuler and 
Aronov 1985), and use (6b) to fit the temperature dependent part of a in figure 2 .  The 
theoretical fitting curve of (J by (6a) and (6b) is shown by the full line in figure 2 where 
C = 1.9 is used. 

Next, we turn to a study of the a! appearing in (6a) and (6b), the subband effect on 
the weak localisation. For this purpose, we introduce the relative change of resistance 
in the weak localisation limit, which can be deduced directly from (6b) ( L ,  < L ,  L ,  B I )  
as 

I < L < ( l + J r / a ! ) l  a <  1. 

ARIR = a L Q / n l .  (8) 
We note that the relative change of resistance was first studied by Thouless using a 
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diffusive picture. As we stated earlier the main difference between our sudden reversal 
picture and the diffusive picture is the way the CBS is achieved. Actually, when y = 1 
(only the lowest subband occupied), from (8) we obtain AR/R = 2L#/nWkFl which 
agrees with (up to a numerical factor) the result AR/R - L,/WkFl from the Thouless' 
theory (if we extend it to the effective ID system from a 2D system). For the multi- 
subband case, the subband factor y (see (6)) depends on the details of the confinement 
potential. In case of a square well confinement potential, k, = nn/W 

where /3 = WkF/n, m is the largest integer smaller than /3. Also, the step function 
e ( x )  in (9) restricts the n's which contributes to y .  Now, from the condition tan q n  
( = k n / m  = n / w )  < tan q c  ( = W/l) ,  the O(x)  can be transformed to the 
inequality 

/3* - n2 > (nl/W)* (10) 
which must be satisfied for the /3 and n in (9). Equation (10) indicates that for a 
very narrow quantum wire (1 %- W ) ,  only the electrons in the lowest subbands (n  = 0) 
contribute to the quantum corrections of the resistance, and from (9) one easily obtains 
y = 1 and cx = 2/np  follows. The sample number 44 in the experiments of Hiramoto et 
a1 (1989) which we studied above (L = 1.9 pm, 1 = 0.48 pm, W = 0.09 pm) should be 
one example. As a check, we mention that the cx = 0.51 we used in our previous 
discussion for that sample would imply a theoretical value of /3 = 1.25, which corresponds 
to a not untypical value n, = 10l2 cm-2 for that sample. This estimate consistently 
supports our theory presented in this section. Furthermore, for samples with a width 
W d 1 at large density, from (9) and (10) we expect more subbands will add to the 
contribution to y and so a will decrease slower than W-'. These facts are all very 
consistent with experimental results (Skocpol 1988). Also, the finding that only the 
electrons in the lowest subbands or so, contributes to the quantum correction to the 
resistance is good evidence in support of the sudden reversal picture presented in section 
1 for weak localisation in the semiconductor quantum wire. 

4. AC conductivity 

The dynamical conductivity a(w) in both the w z  
analytically from (1) and (9, as we will now show. 

with the use of po(w) = M / z ,  

1 and w t  + 1 region can be obtained 

In the w z  %- 1 region, our results simply reduce to the well-known Drude model, 

a (w)  = ao/w2z* (ut %- 1) (11) 
where a' is the same as that in (6). The sample length, L,  independence of a ( w )  at 
wz + 1 seen above, reflects the delocalisation effect of the high frequency field. 

Let us consider the low frequency regime where, as we shall see, new results emerge. 
In general, w t  4 1, by using (9,  (1) is reduced to 

= oO{l - (d2JCq,O ln[l(l - q O m  +qUlL,)/(1 + q u w  -qwL#)lll (Wt 4 1). 
(12) 
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The above result reveals two different behaviours in two different frequency regions 
roughly separated by the dephasing rate (ti'). 

In the very lowfrequency limit (w Q uF/L@), (12) is reduced to 
U ( @ )  = a(w = 0) - a(e2/3hn)02z2(L$/13 - 1) (w Q z;') (13) 

where a(w = 0) is defined by (6). For a localised system, ( L  > L,), a(w = 0) cannot be 
further reduced and (13) tells us the system will still be localised at w Q t;' . For a non- 
localised system ( L  < &), (6) and (13) show that the system stays non-localised and the 
a(w)  will decrease from a(w = 0) when w increases in the region w Q z;'. 

In the intermediate lowfrequency region (z;' Q w Q t - I ) ,  (12) is reduced to 
a(@) = ao[l + a/n - a v F / ~ w 2 z L @  + (a/3n)w2z2]. (14) 

Equation (14) is a particular interesting result for the system which is originally localised 
(i.e., L > (1 + n/a)I). The term whichisproportional to  in (14), keeps the a(w) 
localised at low frequencies up to a frequency w, estimated by the condition 1 + a/n = 
cuV,/(n~~~tL,) .  Once w > U,, the system is delocalised and the last term in (14) will 
determine the frequency behaviour of a(o).  In other words, (14) predicts that for a 
weakly localised quantum wire, there exists a critical frequency U, = (muF/  
(n + ~ ) L @ z ) ' / ~  above which the system will be delocalised and will have a a(o )  - w 2  
behaviour. It is interesting to note that a a(o) - w 2  delocalisation behaviour has pre- 
viously been shown for the strongly localised system (Mott and Twose 1961), a property 
due to the hopping conductivity where the system has a localisation length essentially 
equal to the mean free path. On the other hand, a clear estimate of the critical frequency 
w, for the delocalisation has not been achieved as we did here. Our finding of u(w)  - w 2  
for the weakly localised quantum wire (similar to the behaviour for a strongly localised 
strictly ID system) suggests that the a(@) - w 2  behaviour should not be used as a criteria 
for judging whether the system is strongly localised. Instead, one may use the clear 
different temperature dependence of the weakly localised ( a  - T-", where n depends 
on the inelastic scattering mechanism) and the strongly localised ( U  - exp(aT-")) 
systems. We note that existing experimental data (Skocpol 1988, Hiramoto et a1 1989) 
for the lightly doped semiconductor quantum wires, indicate a power law dependence 
for the conductance of these systems, in support of the weak localisation description. 
Unfortunately, to our knowledge, no AC conductance measurements on those systems 
have been performed up to now. According to our theory, the a(w) measurement will 
give a clue to the dynamics of the CBS process. 

In the hope of stimulating experimental work, in figure 3, we have plotted the 
conductivity a(o) calculated by (1) and ( 5 )  in the whole range of w for different values 
of a and zJz. We note that near w t  - 1, (9,  is no longer a very good approximation 
and the memory function p ( w )  in (1) is expected to have a more complicated form. For 
this reason, the results for a(w) near w z  - 1 are plotted in figure 3 by broken lines. As 
can be seen from that figure, the main features of a(w) for our quantum wire are: (i) 
there exists a critical frequency w, = (avF/(n + L U ) L @ ~ ) " ~  below which the system is 
localised; (ii) when w b w,, the system is delocalised and a(w) - w 2 ,  (iii) at w z  % 1, 
U - U-*, i.e. it shows the classical Drude behaviour. 

5. Summary 

In summary, we have presented a new (sudden reversal) picture of the weak localisation 
theory for lightly doped semiconductor quantum wires, which have a cross section 
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Figure 3. The conductivity (in units of U" = n e 2 t / m )  as a function of frequency (in units of 
the inverse of the momentum relaxation time (t)) for a quantum wire in the sudden reversal 
picture evaluated by (1) and ( 5 ) :  ( U )  at three different inverse cross section parameters (Y = 
0.05,0.1,1; (b)  at three different inelastic scattering times t+/t = 10, lo2, lo3. Broken lines 
centred near ut - 1 indicate our formalism is not fully applicable in this region. 

comparable to the Fermi wavelength. The electronic motion in our picture is essentially 
one-dimensional and the localisation length of the system is much larger than the mean 
free path. This physical picture survives even when multi-subbands are involved. In the 
static limit, our result (6) is consistent with that of the diffusive picture in the ID case 
(a = 1) as well as in the effective ID case (a - W-').  Our theory explains well the recent 
experiments of Hiramoto et a1 who found temperature independent transport behaviour 
at very low temperature for narrow AlGaAs/GaAs quantum wire, and has a very good 
fit to the conductivity data extracted from their experiments. In the calculation of the 
dynamical conductivity, our result (12) shows that for the quantum wire systems we 
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studied, there is a critical value of the frequency above which the system is delocalised 
and the AC conductivity rises as u2. We hope our study will stimulate more experimental 
interests in the study of the frequency dependence of the conductivity of the lightly 
doped semiconductor quantum wire. 
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